Гормоны поджелудочной железы биохимия животных

Гормоны поджелудочной железы биохимия животных thumbnail

Поджелудочная железа расположена в брыжейке двенадцатиперстной кишки. Железа осуществляет две важнейшие функции: экзокринную и эндокринную. Большая ее часть (95%) выполняет экзокринную функцию — обеспечение синтеза и секреции пищеварительных ферментов. Эндокринная функция осуществляет секрецию гормонов, участвующих в регуляции различных процессов.

Для поджелудочной железы характерным является клеточный полиморфизм. Островки Лангерганса выделяют четыре типа клеток железы, каждый из которых вырабатывает определенный гормон: а-клетки (секретируют глюкагон), р-клетки (секретируют инсулин), D-клетки (секретируют соматостатин), F-клетки (секретируют панкреатический полипептид).

Уровень глюкозы в крови поддерживается сравнительно постоянным. Глюкоза в тканях трансформируется в глюкозо- 6-фосфат, ключевой посредник, который может быть направлен на синтез гликогена, синтез энергии по пути гликолиза, на окисление по пентозофосфатному пути. Судьба глюкозо-6-фос- фата определяется действием двух гормонов поджелудочной железы — инсулина и глюкагона. Высокий уровень глюкозы в крови приводит к увеличению секреции инсулина, а низкий уровень глюкозы стимулирует секрецию глюкагона.

Инсулин – это первый белковый гормон, полученный в 1925 г. в кристаллическом виде и с выясненной Сэнджером Ф. (Нобелевская премия, 1958, 1981) в 1953 г. аминокислотной последовательностью. М. м. инсулина = 5800. Он синтезируется в форме проинсулина (84 аминокислотных остатка), а затем в результате протеолиза в аппарате Гольджи с отщеплением С-пептида из 33 аминокислотных остатков переходит в активную форму. Таким образом, молекула инсулина состоит из двух полипептидных цепей (А и В) с 21 и 30 аминокислотами соответственно, связанных двумя дисульфидными связями. Из аппарата Гольджи инсулин поступает в везикулы, где связывается с цинком и депонируется в кристаллическом виде в секреторных гранулах (3-клеток.

Под влиянием различных стимулов инсулин освобождается от цинка и поступает по системе воротной вены в печень, где часть инсулина, не разрушенного в печени, остается в свободном виде. Из печени инсулин поступает в клетки-мишени. В крови инсулин не связан с транспортными белками, а поэтому его период полураспада составляет лишь 3-5 мин.

Главным биологическим стимулятором продукции инсулина является глюкоза, вступающая во взаимодействие с рецепторами плазматической мембраны (3-клеток. Связывание инсулина с его рецепторами на поверхности клеток-мишеней (печень, жировая ткань) без проникновения внутрь клетки вызывает образование в ней вторичных посредников, что приводит к активизации ферментов внутри клетки уже через несколько секунд или часов.

Механизм действия инсулина на обменные процессы детально еще не выяснен. При высоком содержании инсулина в крови число рецепторов гормона на поверхности мембран уменьшается и, таким образом, чувствительность тканей-мишеней к инсулину снижается. Жировая клетка, например, содержит 10 тыс. рецепторов, поэтому она более чувствительна к действию гормона, чем клетки печени.

Под влиянием притока к поджелудочной железе большого количества глюкозы секреция инсулина стимулируется: гли- когенсинтаза дефосфорилируется и становится активной, а глюкоза ориентируется на синтез гликогена. Стимуляторами секреции инсулина являются также АКТГ, СТГ, глюкокортикоиды, глюкагон, аминокислоты и другие биологически активные вещества. Соматостатин является ингибитором выделения инсулина. Кроме того, в регуляции секреции инсулина принимают участие парасимпатическая (стимулирует) и симпатическая (подавляет) нервная система. Важную роль в регуляции высвобождения гормона играет блуждающий нерв.

Инсулин — единственный гормон, способный понижать уровень сахара в крови, тогда как целый ряд других гормонов в организме повышает уровень сахара в крови. Во всех органах внутри клеток концентрация глюкозы ниже, чем вне клетки.

Инсулин облегчает диффузию глюкозы и аминокислот внутрь клеток, а в клетках печени способствует усилению фосфорилирования глюкозы. В результате фосфорилирования внутри клеток поддерживается низкий уровень свободной глюкозы, что усиливает приток глюкозы внутрь клеток. Внутри клеток инсулин усиливает гликолиз, синтез липидов, белков, гликогена, ингибирует липолиз. Все это приводит к снижению концентрации глюкозы в крови животного.

Инсулин — важнейший анаболический агент в печени, жировой ткани, мышцах. Эти эффекты объясняются усилением образования АТФ, НАДФН + Н+. Основной источник энергии в клетках — аэробный гликолиз, реакции которого активируются за счет влияния инсулина на клеточные ферменты этого процесса. Понижение в печени активности фермента фруктозо-1,6-дифосфатазы и пируваткарбоксилазы приводит к снижению глюконеогенеза.

Инсулин оказывает влияние на обмен липидов. Запасы липидов в организме увеличиваются за счет стимуляции транспорта глюкозы в клетки жировых депо, где глюкоза используется для синтеза триглицеридов. Инсулин ингибирует гормончувстви- тельную липазу, которая обеспечивает гидролиз триглицеридов жировых депо, в результате уровень жирных кислот в крови снижается.

После приема животным кормов инсулин усиливает синтез жирных кислот:

  • • путем активации аэробного гликолиза и образования аце- тил-КоА митохондрий, что повышает концентрацию в цитоплазме цитрата и ацетил-КоА;
  • • за счет прямой активации ацетил-КоА карбоксилазы, начального фермента синтеза жирных кислот;
  • • за счет усиления образования НАДФН2 в пентозофосфат- ном пути.

Недостаток синтеза инсулина вызывает развитие в организме сахарного диабета (Diabetes mellitus) с признаками гипергликемии, глюкозурии, полиурии. Диабет характеризуется нарушениями метаболизма углеводов, жиров, белков. Гипергликемия при сахарном диабете связана с недостатком транспорта глюкозы внутрь клеток в силу снижения активности инсулина и высокой степени глюконеогенеза, так как действие глюкаго- на не сдерживается инсулином.

При инсулиновой недостаточности происходит усиление липолиза. Усиленный липолиз приводит к повышению уровня свободных жирных кислот и глицерина в крови и печени. Свободные жирные кислоты являются источником синтеза кетоновых тел, которые, накапливаясь, способствуют развитию ацидоза, усиливают тканевую гипоксию. Гепатоциты инфильтрируются продуктами жирового обмена, и создаются условия для развития жировой инфильтрации печени (диабетический стеатез).

Читайте также:  Поджелудочная железа нет хвоста что это

При дефиците инсулина активируется глюконеогенез под действием глюкагона и гликогенолиз. Для синтеза глюкозы используются аминокислоты, образующиеся при усилении распада тканевых белков, в результате уровень белков в тканях снижается. В процессе глюконеогенеза активно используется аланин, поэтому в крови увеличивается содержание аминокислот с разветвленной цепью (валин, лейцин, изолейцин), утилизация которых мышечной тканью снижается. Таким образом, возникает гипергликемия и накопление продуктов распада белков — мочевины, азота, развивается гиперазотемия.

Инсулин также оказывает влияние на процессы репликации и транскрипции более чем 100 специфических мРНК в печени, сердечной и скелетных мышцах, жировой ткани, участвуя таким образом в клеточной пролиферации и дифференцировке. Инсулин ускоряет фосфорилирование белков, которые регулируют транспорт метаболитов и транскрипцию более 60 генов.

Вследствие гипергликемии происходит перераспределение воды в тканях, выход жидкости из клеток в кровяное русло, что приводит к тканевой дегидратации. Повышение уровня жирных кислот в печени вызывает усиление синтеза триглицеридов, липопротеинов, провоцируя ожирение печени.

В норме инсулин способствует транспорту аминокислот в клетки и синтезу белков. Однако у диабетиков повышение уровня аланина способствует усилению глюконеогенеза и гипергликемии. Повышение использования аминокислот приводит к увеличению синтеза мочевины в печени. В конечном счете усиление катаболизма аминокислот приводит к отрицательному азотистому балансу. При введении в организм инсулина указанные нарушения исчезают. При этом следует учитывать, что действие гормона по времени ограничено.

В настоящее время инсулин синтезирован химическим путем и методом генной инженерии. Препараты инсулина получают из поджелудочных желез свиней и крупного рогатого скота. По аминокислотному спектру из инсулинов животного происхождения наиболее близки к человеческому свиной и китовый инсулины, обладающие меньшей антигенной активностью. Человеческий инсулин впервые был получен в 1965 г., а его промышленный синтез осуществлен в 1980 г. Сегодня существуют два способа промышленного получения инсулина: биосинтетический и полусинтетический. Биосинтетический инсулин синтезирован путем генной инженерии (с использованием Е. coli), а полусинтетический препарат получают путем замены аланина в 30-ом положении В-полипептидной цепи молекулы инсулина свиньи на треонин.

По продолжительности действия инсулины подразделяются на инсулины короткого (6-8 ч), промежуточного (10-12 ч) и длительного действия (8-22 ч). К наиболее частым осложнениям, вызываемым введением инсулина, относятся гипогликемия, аллергические реакции. Явления гипогликемического шока наступают при снижении концентрации глюкозы в крови человека до 45-50 мг%.

Глюкагон – это полипептид, м. м. = 3600-4200, содержит 29 аминокислотных остатков. Синтезируется в а-клетках островков Лангерганса в форме проглюкагона в ответ на низкий уровень глюкозы в крови. В крови глюкагон не связан с белками- транспортерами и период его полураспада составляет 3-5 мин. Печень и почки быстро инактивируют глюкагон. Клетки печени — основные мишени глюкагона. Действие глюкагона прямо противоположно эффектам инсулина.

Первостепенное действие глюкагона — активация цАМФ- зависимой фосфорилазной системы печени с превращением гликогена в глюкозу, которая поступает в кровь. Клетки печени содержат фермент глюкозо-6-фосфорилазу и могут обеспечивать поступление свободной глюкозы в кровь. Мышечная и другие ткани имеют дефицит этого фермента, а поэтому не способны к «экспорту» глюкозы. Глюкагон также усиливает глюконеогенез в печени за счет активации ряда ферментов и увеличения в печени концентрации предшественников глюкозы.

Глюкагон снижает активность пируваткиназы и ацетил- КоА-карбоксилазы, стимулирует цАМФ-зависимую липазную активность в клетках жировой ткани, печени с превращением триглицеридов в свободные жирные кислоты и глицерин, что способствует усилению синтеза кетоновых тел. Таким образом глюкагон стимулирует липолиз.

Под влиянием глюкагона происходит угнетение синтеза белка и усиление его распада, поэтому значительная часть свободных аминокислот вовлекается в глюконеогенез. Высокое отношение глюкагон:инсулин в крови повышает уровень глю- конеогенеза и снижает активность гликолиза в печени. Низкое отношение глюкагон:инсулин имеет обратный эффект.

Соматостатин впервые выделен из гипоталамуса. Это циклический пептид из 14 аминокислотных остатков, синтезируемый также р-клетках поджелудочной железы в виде прогормона из 28 аминокислот. В настоящее время синтез сома- тостатина установлен и в разных отделах пищеварительного тракта.

Механизм действия соматостатина выяснен недостаточно. Вероятно, его эффекты связаны с блокированием поступления в клетки железы Са++, необходимого для секреции других гормонов поджелудочной железы. Соматостатин подавляет эффекты инсулина и глюкагона, тормозит секрецию гастрина и ферментов поджелудочной железы. Соматостатин снижает абсорбцию глюкозы в кишечнике, регулируя таким образом концентрацию сахара в крови. Соматостатин также блокирует высвобождение соматотропина гипофизом. Следует считать, что эффекты соматостатина проявляются не в подавлении синтеза других гормонов, а в торможении их секреции в кровь.

Панкреатический полипептид включает 36 аминокислотных остатков, м. м. = 4200, синтезируется F-клетками поджелудочной железы. Панкреатический полипептид способен расщеплять гликоген подобно глюкагону, активизировать ферменты поджелудочной железы и желудка. Можно полагать, что клетками-мишенями для этого гормона являются клетки всех отделов желудочно-кишечного тракта. Биохимические процессы, связанные с панкреатическим полипептидом, не изучены. При сахарном диабете выявлена гиперплазия синтезирующих полипептид клеток.

Источник

Поджелудочная железа (Pancreas) — железа двойной функции: внешнесекреторной и внутрисекреторной. Внешнесекреторная функция заключается в синтезе и выделении в двенадцатиперстную кишку сока, содержащего пищеварительные ферменты и электролиты, внутрисекреторная — в синтезе и выделении в кровь гормонов.

Читайте также:  Какие пить травы при болезни поджелудочной железы

Внешнесекреторная часть железы сильно развита и составляет более 95 % ее массы. Она имеет дольчатое строение и состоит из альвеол (ацинусов) и выводных протоков. Основная масса ацинусов (железисто-пузырьковидные концевые отделы) представлена панкреатическими клетками — панкреацитами — секретируемыми клетками.

Внутрисекреторная часть железы представлена островками Лангерганса, которые составляют около 30 % массы железы. Различают несколько видов островков Лангерганса по способности секретировать полипептидные гормоны: А-клетки продуцируют глюкогон, В-клетки — инсулин, D-клетки — самостатин. Основную массу островков Лангерганса (около 60 %) составляют В-клетки.

Поджелудочная железа лежит в брыжейке двенадцатиперстной кишки, на печени, разделяясь на правую, левую и среднюю доли. Проток поджелудочной железы открывается в двенадцатиперстную кишку самостоятельно или вместе с желчным протоком. Иногда встречается добавочный проток, который впадает в двенадцатиперстную кишку самостоятельно. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами (n. vagus).

У собак железа длинная, узкая, красноватого цвета, образует более объемистую левую ветвь и более длинную правую ветвь, достигающую почек. Поджелудочный проток открывается в двенадцатиперстную кишку вместе с желчным протоком. Иногда встречается добавочный проток. Абсолютная масса железы 13-18 г.

У крупного рогатого скота поджелудочная железа располагается вдоль двенадцатиперстной кишки от 12-го грудного до 2-4-го поясничного позвонка, под правой ножкой диафрагмы, частично на лабиринте ободочной кишки. Состоит из поперечной и правой продольной ветвей, соединяющихся под углом в правой стороне. Выводной проток открывается обособленно от желчного протока на расстоянии 30-40 см от него (у овец вместе с желчным протоком). Абсолютная масса железы у крупного рогатого скота 350-500 г, у овец 50-70 г.

У лошадей на поджелудочной железе различают среднюю часть — тело, прилежащее к воротному изгибу двенадцатиперстной кишки. Левый конец железы, или хвост, длинный и узкий, достигает слева слепого мешка желудка, соединяясь с ним, селезенкой и левой почкой. Правый конец железы, или головка, доходит до правой почки, слепой и ободочной кишки. Поджелудочный проток открывается вместе с печеночным. Иногда встречается дополнительный проток. Цвет железы желтоватый, абсолютная масса до 250-350 г.

У свиней на железе различают среднюю, правую и левую доли. Через среднюю долю проходит воротная вена печени. Железа лежит под двумя последними грудными и двумя первыми поясничными позвонками. Проток один, открывается на 13-20 см дистальнее устья желчного протока. Абсолютная масса железы 150 г.

Внешнесекреторная (экзогенная) функция поджелудочной железы. Основной продукт внешнесекреторной функции поджелудочной железы — пищеварительный сок, который содержит 90 % воды и 10% плотного осадка. Плотность сока 1,008-1,010; рН 7,2-8,0 (у лошадей 7,30-7,58; у крупного рогатого скота 8). В состав плотного осадка входят белковые вещества и минеральные соединения: бикарбонат натрия, хлорид натрия, хлорид кальция, фосфорнокислый натрий и др.

Сок поджелудочной железы содержит протеолитические и нуклеолитические ферменты (трипсин, хемотрипсин, карбоксипептидазы, эластазу, нуклеазы, аминопептидазу, коллагеназу, дипептидазу), амилолитические ферменты (а-амилазу, мальтазу, лактазу, инвертазу) и липолитические ферменты (липазу, фосфолипазу, холинэстеразу, карбоксиэстеразу, моноглицеридлипазу, щелочную фосфатазу). Трипсин расщепляет белки до аминокислот и выделяется в виде неактивного трипсиногена, который активируется ферментом кишечного сока энтерокиназой. Химотрипсин расщепляет белки и полипептиды до аминокислот и выделяется в форме неактивного химотрипсиногена; активируется трипсином. Карбоксиполипептидазы действуют на полипептиды, отщепляя от них аминокислоты. Дипептидазы расщепляют дипептиды на свободные аминокислоты. Эластаза действует на белки соединительной ткани — эластин, коллаген. Протаминаза расщепляет протамины, нуклеазы — нуклеиновые кислоты на мононуклеотиды и фосфорную кислоту.

При воспалении поджелудочной железы, аутоиммунных процессах протеолитические ферменты становятся активными уже в самой железе, вызывая ее разрушение. а-Амилаза расщепляет крахмал и гликоген до мальтозы; мальтаза — мальтозу до глюкозы; лактаза расщепляет молочный сахар на глюкозу и галактозу (она имеет существенное значение в пищеварении молодняка), инвертаза — сахарозу на глюкозу и фруктозу; липаза и другие липолитические ферменты расщепляют жиры на глицерин и жирные кислоты. Липолитические ферменты, в частности липаза, секретируются в активном состоянии, но расщепляют только жир, эмульгированный желчными кислотами. Амилазы, также как и липазы, в соке поджелудочной железы находятся в активном состоянии.

Из электролитов в соке поджелудочной железы содержатся натрий, калий, хлор, кальций, магний, цинк, медь и значительное количество бикарбонатов, обеспечивающих нейтрализацию кислого содержимого двенадцатиперстной кишки. Тем самым создается оптимальная среда для активных ферментов.

Доказано, что помимо перечисленного выше действия сок поджелудочной железы обладает свойством регуляции микробной ассоциации в двенадцатиперстной кишке, оказывая определенное бактерицидное действие. Прекращение поступления в кишечник панкреатического сока ведет к усиленному бактериальному росту в проксимальном отделе тонкого кишечника у собак.

Эндокринная (гормональная) функция поджелудочной железы. Важнейшими гормонами поджелудочной железы являются инсулин, глюкогон и соматостатин.

Инсулин образуется в В-клетках из предшественника — проинсулина. Синтезируемый проинсулин поступает в аппарат Гольджи, где расщепляется на молекулу С-пептида и молекулу инсулина. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где инсулин связывается с цинком и депонируется в таком состоянии. Под влиянием различных стимулов инсулин освобождается от цинка и поступает в прекапиллярное пространство. Основным стимулятором секреции инсулина служит глюкоза: при ее повышении в крови усиливается синтез инсулина. В определенной степени этим свойством обладают аминокислоты аргинин и лейцин, а также глюкогон, глетрин, секретин, глюкокортикоиды, соматостатин, никотиновая кислота. Инсулин в крови находится в свободном и связанном с белками плазмы состоянии. Распад инсулина происходит в печени под влиянием глютатионтрансферазы и глютатионредуктазы, в почках под влиянием инсулиназы, в жировой ткани под влиянием протеолитических ферментов. Проинсулин и С-пептид тоже подвергаются дегидратации в печени. Его биологическое действие обусловлено способностью связываться со специфическими рецепторами клеточной цитоплазматической мембраны.

Читайте также:  Не однородная поджелудочная железа это

Инсулин усиливает синтез углеводов, белков, нуклеиновых кислот и жира. Он ускоряет транспорт глюкозы в клетки инсулинозависимых тканей (печень, мышцы, жировая ткань), стимулирует синтез гликогена в печени и подавляет глюконеогенез (образование глюкозы из неуглеводных компонентов), гликогенолиз (распад гликогена), что в конечном итоге ведет к снижению уровня сахара в крови. Этот гормон ускоряет транспорт аминокислот через цитоплазматическую мембрану клеток, стимулирует синтез белка. Инсулин участвует в процессе включения жирных кислот в триглицериды жировой ткани, стимулирует синтез липидов и подавляет липолиз (распад жира).

В регуляции синтеза белка и утилизации углеводов вместе с инсулином участвуют кальций и магний. Концентрация инсулина в крови человека 15-20 мкЕД/мл.

Глюкогон — полипептид, секреция которого регулируется глюкозой, аминокислотами, гастроинтестинальными гормонами (панклеозимин) и симпатической нервной системой. Секреция глюкогона усиливается при снижении в крови сахара, СЖК, раздражении симпатической нервной системы, а угнетается при гипергликемии, повышении уровня СЖК, соматостатина. Под влиянием глюкогона стимулируется глюконеогенез, ускоряется распад гликогена, т. е. увеличивается продукция глюкозы. Под действием глюкогона ускоряется синтез активной формы фосфорилазы, участвующей в образовании глюкозы из неуглеводных компонентов (глюконеогенез). Глюкогон способен связываться с рецепторами адипацитов (клеток жировой ткани), способствуя распаду триглицеридов с образованием глицерина и СЖК. Глюконеогенез сопровождается не только образованием глюкозы, но и промежуточных продуктов обмена веществ — кетоновых тел, развитием кетоацидоза. Содержание в плазме крови глюкогона у человека составляет 50-70пг/мл. Концентрация этого гормона в крови увеличивается при голодании (голодный кетоз у овец), хронических заболеваниях печени.

Соматостатин — гормон, основной синтез которого осуществляется в гипоталамусе, а также в D-клетках поджелудочной железы. Соматостатин подавляет секрецию СТГ, АКТГ, ТТГ, гастрина, глюкогона, инсулина, ренина, секретина, вазоактивного желудочного пептида, желудочного сока, панкреатических ферментов и электролитов. Содержание соматостатина в крови повышается при сахарном диабете I типа, D-клеточной опухоли поджелудочной железы (соматостатиноме). Говоря о гормонах поджелудочной железы, следует отметить, что энергетический баланс в организме поддерживается сплошными биохимическими процессами, в которых непосредственное участие принимают инсулин, глюкогон и частично соматостатин. Так, во время голодания уровень в крови инсулина снижается, а глюкогона повышается, усиливается глюконеогенез. Благодаря этому поддерживается минимальный уровень глюкозы в крови. Усиление липолиза сопровождается повышением в крови СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. В условиях гипогликемии источником энергии становятся и кетокислоты.

Нейроэндокринная регуляция функции поджелудочной железы. Деятельность поджелудочной железы находится под влиянием парасимпатической (n. vagus) и симпатической (чревные нервы) нервной системы, гипоталамогипофизарной системы и других желез внутренней секреции. В частности, блуждающий нерв играет определенную роль в регуляции ферментообразования. Секреторные волокна входят также в состав симпатических нервов, иннервирующих поджелудочную железу. При стимуляции отдельных волокон блуждающего нерва с усилением сокоотделения происходит и его торможение. Основоположником отечественной физиологии И. П. Павловым доказано, что отделение поджелудочного сока начинается при виде корма или раздражении рецепторов полости рта и глотки. Этот феномен необходимо учитывать в случаях назначения голодной диеты при остром панкреатите у собак, кошек и других животных, не допуская их зрительного и обонятельного контакта с кормом.

Наряду с нервной происходит и гуморальная регуляция функции поджелудочной железы. Поступление соляной кислоты в двенадцатиперстную кишку вызывает секрецию поджелудочного сока даже после перерезки блуждающих и чревных (симпатических) нервов и разрушения продолговатого мозга. Это положение лежит в основе назначения медикаментов, снижающих секрецию поджелудочного сока при остром панкреатите. Под влиянием соляной кислоты желудочного сока, поступающего в кишечник, из клеток слизистой оболочки тонкой кишки выделяется просекретин. Соляная кислота активирует просекретин, превращая его в секретин. Всасываясь в кровь, секретин действует на поджелудочную железу, усиливая выделение ею сока: одновременно он тормозит функцию обкладочных желез, чем препятствует чрезмерно интенсивной секреции соляной кислоты железами желудка. Секретин в физиологическом отношении является гормоном. Под влиянием секретина образуется большое количество поджелудочного сока, бедного ферментами и богатого щелочами. Учитывая эту физиологическую особенность, лечение острого панкреатита направлено на снижение секреции соляной кислоты в желудке, подавление активности секретина.

В слизистой оболочке двенадцатиперстной кишки образуется также гормон панкреозимин, который усиливает образование ферментов в поджелудочном соке. Подобное действие оказывают гастрин (образуется в желудке), инсулин, соли желчных кислот.

Тормозящее влияние на секрецию панкреатического сока оказывают нейропептиды — гастроингибирующий полипептид (ГИП), панкреатический полипептид (ПП), вазоактивный интерстинальный полипептид (ВИП), а также гормон соматостатин.

При лечении плотоядных животных с нарушением внешнесекреторной функции поджелудочной железы необходимо иметь в виду, что на молоко выделяется мало сока, на мясо, черный хлеб — много. При кормлении мясом выделяется много трипсина, при кормлении молоком — много липазы и трипсина.

Источник