Джи клетки поджелудочной железы

Джи клетки поджелудочной железы thumbnail

У этого термина существуют и другие значения, см. G.

Место G-клеток в регуляции секреции соляной кислоты в желудке

G-клетки — эндокринные клетки слизистой оболочки желудочно-кишечного тракта, секретирующие гастрин.

G-клетки относятся к апудоцитам и входят в состав гастроэнтеропанкреатической эндокринной системы, которая является частью диффузной эндокринной системы (синоним АПУД-система).

Локализация[править | править код]

G-клетки, в основном, располагаются в антральной части желудка. В меньшей степени они представлены в двенадцатиперстной кишки, в проксимальной её части. У человека число G-клеток в 1 мм² пилорического отдела желудка примерно 220—490, в луковице двенадцатиперстной кишки 6 — 76.[1] G-клетки составляют 26 % от всех нейроэндокринных клеток желудка здорового человека.[2]

В теле желудка и в области дна желудка G-клетки отсутствуют.[3] G-клетки в небольшом количестве обнаружены в тощей кишке и поджелудочной железе.

Функции[править | править код]

G-клетки желудка и двенадцатиперстной кишки вырабатывают гастрин нескольких изоформ. Через кровеносную систему гастрин или непосредственно воздействует на париетальные клетки, или опосредованно, через стимулирование выработки ECL-клетками гистамина и усиливает секрецию соляной кислоты и пепсиногена. Кроме того, гастрин усиливает секрецию поджелудочной железы, стимулирует моторику желудка, тонкой и толстой кишок и желчного пузыря.[2]

G-клетки имеют мембранные рецепторы, открытые в просвет желудочно-кишечного тракта. С этой стороны они стимулируются пептидными компонентами недопереваренной пищи, а также аминокислотами, соединениями кальция. Жиры и углеводы стимулируют G-клетки в значительно меньшей степени. Важным для секреции гастрина фактором является величина кислотности, которая должна быть в пределах от 5 до 7 рН. Стимуляторами секреции гастрина являются холецистокинин и ацетилхолин.

Ингибиторами, тормозящими секрецию гастрина, являются соматостатин, а также кислотность желудочного содержимого меньшая 5 рН. При кислотности ниже 1,7 рН секреция гастрина подавляется полностью.[3]

Гиперплазия G-клеток[править | править код]

При гиперплазии G-клеток образуется гастринома — доброкачественная или злокачественная опухоль, локализующаяся в поджелудочной железе, двенадцатиперстной или тощей кишке, или даже в перипанкреатических лимфатических узлах, в воротах селезёнки или стенке желудка. Эта опухоль вырабатывает большее количество гастрина, возникает гипергастринимия, которая, через механизм стимуляции париетальных клеток, является причиной чрезмерной продукции соляной кислоты и пепсина. В нормальной ситуации G-клетки под воздействием соляной кислоты тормозят выработку гастрина, но на G-клетки гастрино́м фактор кислотности не влияет. В результате развиваются множественные пептические язвы желудка, двенадцатиперстной или тощей кишки. Секреция гастрина гастриномами особенно резко усиливается после приема пищи.

Клиническое проявление гипергастринимии — синдром Золлингера — Эллисона (1-го типа).[4]

История[править | править код]

Впервые G-клетки были обнаружены E. Solcia в антральной части желудка в 1967 году. Solcia предполагал, что G-клетки могут секретировать гастрин. McGuigan с помощью прямой иммунофлюоресценции определил, что в G-клетках имеется гастрин.[5]

Примечания[править | править код]

  1. Лещенко В. И., Зверков И. В., Нечаев B. M., Ивашкин В. Т. Регуляторные пептиды и гастроинтестинальные эндокринные клетки у больных с грыжей пищеводного отверстия диафрагмы и пептическим эзофагитом. Русский Медицинский Журнал.
  2. 1 2 Коротько Г. Ф. Физиология системы пищеварения. — Краснодар: 2009. — 608 с. Изд-во ООО БК «Группа Б». ISBN 5-93730-021-1.
  3. 1 2 Бельмер С. В., Коваленко А. А. Желудочная секреция и методы её оценки. В кн. «Кислотозависимые состояния у детей». Под ред. акад. РАМН В. А. Таболина. М.: РГМУ, 1999, 120 с.
  4. Охлобыстин А. В. Диагностика и лечение синдрома Золлингера–Эллисона. Русский Медицинский Журнал. – 1998. – т. 6. – № 7.
  5. Ивашкин В. Т. Иван Петрович Павлов. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. № 6, т. 14, 2004, с. 4 — 28.

Источник

Человеческий организм совершенное творение. Имеет внутренние органы, обладающие уникальными комплексами функций. Одним из таких тонких, точных по функционированию и важнейшим для поддержания здорового долголетия органов является поджелудочная железа — генератор гормонов и панкреатического сока. Важно иметь представление об устройстве, чтобы восстановить ее функции.

Джи клетки поджелудочной железы

Структуры поджелудочной железы (островки Лангерганса)

Орган с распределенной многообразной альвеолярно-трубчатой структурой имеет железистые элементы, которые выполняют уникальные внутри- и вешнесекреторные функции. Он располагается позади желудка в брюшной полости, его масса до 80 г. Соединительная ткань разделяет железу на доли перегородками.

В них размещаются сосуды кровеносной системы и выходящие каналы. Внутри долей располагаются отделы экзокринной секреции (включают до 97% всего числа клеточных структур) и эндокринные образования (островки Лангерганса). Значительной экзокринной частью органа периодически в двенадцатиперстную кишку выделяется панкреатический сок, содержащий пищеварительные ферменты.

Читайте также:  Пигментные пятна на поджелудочной железе

Джи клетки поджелудочной железы

За внутрисекреторную и внешнесекреторную функции отвечают клеточные скопления (от 1 до 2 миллионов) размером от 0,1 до 0,3 мм. Каждое из них имеет в составе по 20 – 40 шт. Каждой клеткой вырабатываются в кровь гормоны инсулин, глюкагон и пр., управляющие липидным и углеводным обменом. Данная особенность обеспечивается разветвленной системой капилляров и мелких сосудов, пронизывающих их объединения.

Чаще это островки шарообразной формы, встречаются диффузные скопления в виде тяжей, все они не имеют выводящих протоков. Гормоны, выделяемые поджелудочной железой, управляют процессом пищеварения и регулируют состав и уровень питательных веществ, поступающих в кровь. Таким образом, объединяясь в пределах одного органа, внутрисекреторные и внешнесекреторные клеточные компоненты работают как единое целое. В составе обособленных островных скоплений размещаются эндокринные клеточные структуры пяти типов, обеспечивающие продуцирование уникальных гормонов.

Вернуться к оглавлению

Альфа-клетки

Джи клетки поджелудочной железыРазмещаются в пределах периферийных скоплений. Они составляют около 1/4 всех клеток органа и содержат в своих гранулах глюкагон. Их функция — генерирование гормона глюкагон, который, в отличие от формируемого железой инсулина, используется для запуска на внутренних рецепторах клеточных структур (200 000 ед. рецепторов на одну клеточную структуру) печени преобразования гликогено-полимерных молекул сахаров в глюкозу. Последняя, являясь носителем энергии, выводится в кровоток. Данная функция реализуется непрерывно для обеспечения организма энергией.

Вернуться к оглавлению

Бета-клетки

Являются центральными скоплениями. Бета клетки поджелудочной железы составляют около 3/4 всех клеточных структур органа и содержат инсулин. Их функция — генерирование гормона инсулин, который, в отличие от формируемого железой глюкагона, используется для запуска на внутренних рецепторах клеточных структур (150 000 ед. ladyx. рецепторов на одну) печени преобразования глюкозы в полимерные молекулы гликогена. Данное вещество, являясь запасенной энергией, выводится из кровотока.

Таким образом количество сахара в крови нормализуется инсулином. Недостаточное производство инсулина ведет к сохранению повышенного уровня сахара и диабету. Его признаком являются антитела к бета клеткам поджелудочной железы (диабет 1-го типа), обнаруженные в анализах крови. Они снижают производство инсулина, нарушая в крови его баланс с гликогеном. У здорового человека эти антитела в крови отсутствуют.

Вернуться к оглавлению

Дельта-клетки

Джи клетки поджелудочной железы

Они составляют до 1/10 всех клеточных структур органа. Клетки вырабатывают гормон соматостатин, подавляющий секреторную активность генерирования гормонов. В частности, им снижаются выделения глюкагона и инсулина, а также — экзокринные выделения соков для пищеварения и моторика системы пищеварения.

Вернуться к оглавлению

Вип-клетки

Они имеют сокращенное присутствие в органе. В клетках формируется вазоинтестинальный пептид, косвенно улучшающий кровоток, секрецию органа. Им расширяются просветы сосудов, понижается давление в артериях, угнетается формирование слизистой оболочки желудка соляной кислоты, активируется генерирование железой гормонов-антагонистов — инсулина и глюкагона.

Вернуться к оглавлению

РР-клетки

Представлены в островках в количестве до 1/20 от общего числа клеточных структур в железе. Их функция — генерирование панкреатического полипептида, которым мобилизуется и регулируется секреторная деятельность железистых формирований поджелудочной, желудка и печени.

Вернуться к оглавлению

Регенерация клеток

Джи клетки поджелудочной железыЭлектронограммы α-клетки поджелудочной железы.

В отличие от структуры печени, клеткам органа не свойственна способность к выраженной регенерации. Их восстановление происходит, если вовремя осуществлено комплексное лечение на фоне приема специализированного рациона питания. Необходимо помнить, что очаги воспаления и отмирания быстро покрывают поджелудочную железу из-за небольшого объема соединительной ткани. Вместе с тем установлено, что:

  • островковые формирования значительно усиливают свои функции, если железистая ткань органа частично удалена;
  • регенерация островных структур возможна на основе использования стволовых элементов (демонстрируют высокие показатели приживаемости), которые подсаживаются в орган и через время начинают функционировать как клеточные структуры бета типа, генерируя необходимые гормоны.

Пациент в результате может уже не принимать лекарственные препараты, обходиться без диетического меню и восстановить обычную жизнедеятельность.

Вернуться к оглавлению

Пересадка клеток

Высокую эффективность показали манипуляции с клетками из поджелудочной донора, которые подсаживаются к островковым клеткам пациента. Они приживаются, полноценно вырабатывая инсулин и обеспечивая восстановление функций. Такой пересадкой:

  • снимаются риски углубления заболевания;
  • снижается потребность в инсулине;
  • оптимизируется количество глюкозы в крови;
  • снимается пониженная чувствительность к гипогликемии.
Читайте также:  Как вы восстановили поджелудочную железу

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 апреля 2020; проверки требует 1 правка.

Островки Лангерга́нса — скопления гормон-продуцирующих (эндокринных) клеток, преимущественно в хвостовой части поджелудочной железы. Открыты в 1869 году немецким патологоанатомом Паулем Лангергансом (1849—1888). Островки составляют приблизительно 1—2 % массы поджелудочной железы. Поджелудочная железа взрослого здорового человека насчитывает около 1 миллиона островков (общей массой от одного до полутора граммов), которые объединяют понятием орган эндокринной системы.

Историческая справка[править | править код]

Пауль Лангерганс, будучи студентом-медиком, работая у Рудольфа Вирхова, в 1869 году описал скопления клеток в поджелудочной железе, отличавшиеся от окружающей ткани, названные впоследствии его именем[2][3]. В 1881 году К. П. Улезко-Строганова впервые указала на эндокринную роль этих клеток[4]. Инкреаторная функция поджелудочной железы была доказана в Страсбурге (Германия) в клинике крупнейшего диабетолога Наунина Mering и Minkowski в 1889 году — открыт панкреатический диабет и впервые доказана роль поджелудочной железы в его патогенезе[3]. Русский учёный Л. В. Соболев (1876—1919) в диссертации «К морфологии поджелудочной железы при перевязке её протока при диабете и некоторых других условиях» показал, что перевязка выводного протока поджелудочной железы приводит ацинозный (экзокринный) отдел к полной атрофии, тогда как панкреатические островки остаются нетронутыми. На основании опытов Л. В. Соболев пришёл к выводу: «функцией панкреатических островков является регуляция углеводного обмена в организме. Гибель панкреатических островков и выпадение этой функции вызывает болезненное состояние — сахарное мочеизнурение»[3].

В дальнейшем благодаря ряду исследований, проведенных физиологами и патофизиологами в различных странах (проведение панкреатэктомии, получение избирательного некроза бета-клеток поджелудочной железы химическим соединением аллоксаном), получены новые сведения об инкреаторной функции поджелудочной железы.

В 1907 году Lane & Bersley (Чикагский университет) показали различие между двумя видами островковых клеток, которые они назвали тип A (альфа-клетки) и тип B (бета-клетки).

В 1909 году бельгийский исследователь Ян де Мейер предложил называть продукт секреции бета-клеток островков Лангерганса инсулином (от лат. insula — островок). Однако прямых доказательств продукции гормона, влияющего на углеводный обмен, обнаружить не удавалось[3].

В 1921 году в лаборатории физиологии профессора J. Macleod в Торонтском университете молодому канадскому хирургу Фредерику Бантингу и его ассистенту студенту-медику Чарлзу Бесту удалось выделить инсулин.

В 1955 году Сангеру и соавторам (Кембридж) удалось определить последовательность аминокислот и строение молекулы инсулина[3].

В 1962 году Марлин и соавторы обнаружили, что водные экстракты поджелудочной железы способны повышать гликемию. Вещество, вызывающее гипергликемию, назвали «гипергликемическим-гликогенолитическим фактором». Это был глюкагон — один из основных физиологических антагонистов инсулина[3].

В 1967 году Донатану Стейнеру и соавторам (Чикагский университет) удалось обнаружить белок-предшественник инсулина — проинсулин. Они показали, что синтез инсулина бета клетками начинается с образования молекулы проинсулина, от которой в последующем по мере необходимости отщепляется С-пептид и молекула инсулина[3].

В 1973 году Джоном Энсиком (Вашингтонский университет), а также рядом учёных Америки и Европы была проведена работа по очистке и синтезу глюкагона и соматостатина[3].

В 1976 году Gudworth & Bottaggo открыли генетический дефект молекулы инсулина, обнаружив два типа гормона: нормальный и аномальный. последний является антагонистом по отношению к нормальному инсулину[3].

В 1979 году благодаря исследованиям Lacy & Kemp и соавторов появилась возможность пересадки отдельных островков и бета-клеток, удалось отделить островки от экзокринной части поджелудочной железы и осуществить трансплантацию в эксперименте. В 1979—1980 гг. при трансплантации бета-клеток преодолён видоспецифический барьер (клетки здоровых лабораторных животных имплантированы больным животным другого вида)[3].

В 1990 году впервые выполнена пересадка панкреатических островковых клеток больному сахарным диабетом[3].

Типы клеток[править | править код]

Данная диаграмма демонстрирует структурные отличия между панкреатическими островками крысы (вверху) и человека (внизу) pars ventralis pancreas (брюшная часть) — слева; pars dorsalis pancreas (спинная часть) — справа. Различные типы клеток окрашены по-разному: альфа-клетки — красным, бета-клетки — синим, дельта-клетки — фиолетовым, ПП-клетки — зелёным, эпсилон-клетки — жёлтым. Бета-клетки грызуна, в отличие от человека сгруппированы в характерное инсулиновое ядро.

Альфа-клетки[править | править код]

  • Альфа-клетки составляют 15…20 % пула островковых клеток — секретируют глюкагон (естественный антагонист инсулина).

Бета-клетки[править | править код]

  • Бета-клетки составляют 75…80 % пула островковых клеток — секретируют инсулин (с помощью белков-рецепторов проводит глюкозу внутрь клеток организма, активизирует синтез гликогена в печени и мышцах, угнетает глюконеогенез).
Читайте также:  Перипротоковая киста поджелудочной железы

Дельта-клетки[править | править код]

  • Дельта-клетки составляют 3…10 % пула островковых клеток — секретируют соматостатин (угнетает секрецию многих желез);

ПП-клетки[править | править код]

  • ПП-клетки составляют 3…5 % пула островковых клеток — секретируют панкреатический полипептид (подавляет секрецию поджелудочной железы и стимулирует секрецию желудочного сока).

Эпсилон-клетки[править | править код]

  • Эпсилон-клетки составляют <1 % пула островковых клеток — секретируют грелин[5][6] («гормон голода» — возбуждает аппетит).

Строение островка[править | править код]

Панкреатический островок является сложно устроенным функциональным микроорганом с определённым размером, формой и характерным распределением эндокринных клеток. Клеточная архитектура островка влияет на межклеточное соединение и паракринную регуляцию, синхронизирует высвобождение инсулина.

Долгое время считалось, что островки человека и экспериментальных животных сходны как по строению, так и по клеточному составу. Работы последнего десятилетия показали, что у взрослых людей преобладающим типом строения островков является мозаичный, при котором клетки всех типов перемешаны по всему островку, в отличие от грызунов, для которых характерен плащевой тип строения клеток, при котором бета-клетки формируют сердцевину, а альфа-клетки находятся на периферии. Однако, эндокринная часть поджелудочной железы имеет несколько типов организации: это могут быть единичные эндокринные клетки, их небольшие скопления, небольшие островки (диаметром < 100 мкм) и крупные (зрелые) островки.

Небольшие островки имеют у человека и грызунов одинаковое строение. Зрелые островки Лангерганса человека обладают выраженной упорядоченной структурой. В составе такого островка, окруженного соединительнотканной оболочкой, можно выявить дольки, ограниченные кровеносными капиллярами. Сердцевину долек составляет массив бета-клеток, на периферии долек в непосредственной близости с кровеносными капиллярами находятся альфа- и дельта-клетки. Таким образом, клеточная композиция островка зависит от его размера: относительное число альфа-клеток увеличивается вместе с размером островка, в то время как относительное число бета-клеток уменьшается[7].

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Foundational Model of Anatomy
  2. Langerhans P. Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse : Inaugural-Dissertation, zur Erlangung der Doctorwürde in der Medicine und Chirurgie vorgelegt der Medicinischen Facultät der Friedrich-Wilhelms-Universität zu Berlin und öffentlich zu vertheidigen am 18. Februar 1869 (нем.). — Berlin: Buchdruckerei von Gustav Lange, 1869.
  3. 1 2 3 4 5 6 7 8 9 10 11 Клиническая диабетология / Ефимов А. С., Скробонская Н. А. — 1-е изд. — К.: Здоровья, 1998. — 320 с. — 3000 экз. — ISBN 5-311-00917-9.
  4. Жуковский М. А. Детская эндокринология. — 3-е изд. — М.: Медицина, 1995. — 656 с. — 8000 экз. — ISBN 5-225-01167-5.
  5. K. M. Andralojc, A. Mercalli, K. W. Nowak. et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas (англ.). (недоступная ссылка)
  6. ↑ Epsilon cells (Cytokines&Cells Encyclopedia) (англ.). Архивировано 26 октября 2012 года.
  7. Прощина А. Е., Савельев С. В. Иммуногистохимическое исследование распределения α- и β-клеток в разных типах островков Лангерганса поджелудочной железы человека // Бюллетень экспериментальной биологии и медицины. — Изд. РАМН, 2013. — Т. 155, № 6. — С. 763—767. Архивировано 25 ноября 2015 года.

Ссылки[править | править код]

Диабетология

  • Сахарный диабет
  • Нарушение толерантности к глюкозе
  • Состояния, связанные с избытком инсулина

Клинические стадии сахарного диабета

  • Предиабет или достоверные классы риска
  • Нарушение толерантности к глюкозе
  • Явный (манифестный) сахарный диабет

Классификация сахарного диабета

Клинические классы
  • Сахарный диабет 1-го типа ()
  • Сахарный диабет 2-го типа у лиц с нормальной массой тела
  • Сахарный диабет 2-го типа у лиц с ожирением
  • Сахарный диабет беременных
  • Латентный аутоиммунный диабет у взрослых ()
  • Сахарный диабет, связанный с недостаточностью питания (тропический)
Неиммунные формы
сахарного диабета у детей
  • Юношеский ИНСД
  • MODY-диабет
  • Неонатальный сахарный диабет
  • DIDMOAD-синдром (синдром Вольфрама)
  • Синдром Альстрёма
  • Митохондриальный сахарный диабет: Синдром MELAS, Сахарный диабет, сопровождающийся глухотой
Осложнения лечения
  • Аллергические реакции на введение инсулина (Анафилактический шок)
  • Гипогликемическая кома
  • Синдром хронической передозировки инсулина
  • Липодистрофия
Осложнения
сахарного диабета
Острые (диабетическая кома)
Кетоацидоз
Лактатацидоз
Гиперосмолярная комаПоздние
Микроангиопатия (Диабетическая ретинопатия, Диабетическая нефропатия)
Макроангиопатия
Диабетическая стопа
Диабетическая нейропатия
Синдром Мориака
Синдром Нобекура
Поражения других органов и систем

Избыток инсулина

  • Гипогликемия
  • Гипогликемический синдром
  • Синдром хронической передозировки инсулина
  • Инсулинома
  • Незидиобластоз
  • Гипогликемическая кома
  • Инсулинокоматозная терапия

См. также

  • Островки Лангерганса: Альфа-клетка, Бета-клетка, Дельта-клетка
  • Гормоны: Инсулин, Глюкагон, Кортизол, Гормон роста, Норадреналин, Лептин, Соматостатин
  • Глюкоза
  • Кетоновые тела
  • Диетотерапия сахарного диабета
  • Хлебная единица
  • Сахарозаменители
  • Инсулинотерапия
  • Таблетированные сахароснижающие средства
  • Растительные сахароснижающие средства
  • Самоконтроль при сахарном диабете
  • Всемирный день борьбы с диабетом
  • Вторичные формы сахарного диабета
  • Глюкометр

Источник